DEPARTMENT OF AGROECOLOGY

Supporting the agricultural green transition

Jørgen E. Olesen

JØRGEN EIVIND OLESEN SEPTEMBER 2022 HEAD OF DEPARTMENT

The faculties

Faculty of **ARTS**

The faculty covers:

- Theology
- Languages
- Archaeology
- Area studies
- Information science
- Educational science

among other subjects.

AARHUS BSS

The faculty covers:

- Economics
- Management
- Law
- Political science
- Psychology

among other subjects.

Faculty of **HEALTH**

The faculty covers:

- Medicine
- Odontology
- Optometry
- Sport science
- Nursing
- Public health

among other subjects.

Faculty of **NATURAL SCIENCES**

The faculty covers:

- Biology
- Physics
- Astronomy
- Chemistry
- Geology
- Mathematics
- Computer science
- Molecular biology
- Nanoscience

among other subjects.

Faculty of **TECHNICAL SCIENCES**

The faculty covers:

- Agroecology
- Bioscience
- Food
- Animal science
- Engineering science
- Environmental science

among other subjects.

DEPARTMENT OF AGROECOLOGY

DEPARTMENT OF AGROECOLOGY - ORGANISATION

Department management

Jørgen E. Olesen Head of department

Birgit S. Langvad Head of Secretariat

Jørgen Eriksen JORNÆR

Per Kudsk CROP

Mathias N. Andersen KLIMA

Henrik Brinch-Pedersen CGB

Mogens Nicolaisen PATENT

Mogens H. Greve JORD

SYSTEM

Tommy Dalgaard Klaus Butterbach-Bahl Jens B. Kjeldsen Land-CRAFT

Henning C. Thomsen ASKOV

Søren Vangsgård FLAKKEBJERG

PATENT – Entomology and Plant Pathology

Research areas:

- The Global Rust Reference Center
- Honey bee diseases, genetics and pollination
- Microbiome aided plant resilience
- Nematodes
- Entomology
- Molecular characterisation and diagnosis of pests
- Ecological modelling lab

CROP - Crop Health

Research areas:

- Seed science and technology
- Herbology and application technique
- Pesticide resistance
- Disease and pest management
- Natural product chemistry and environmental chemistry
- Phytobiome studies
- Ecosystem services

CGB – Crop Genetics and Biotechnology

Research area:

- Plant breeding
- New plant breeding techniques
- Genetics
- Biotechnology
- The quality of crops as feed, food and biomass

JORD – Soil Physics and Hydropedology

Research areas:

- Soil quality
- Soil spectroscopy
- Water and contaminant transport
- Digital soil mapping
- Soil mechanical behaviour
- Sustainable soil management
- Arctic soils

JORNÆR – Soil Fertility

Research areas:

- Biochar •
- Grassland ecosystem services ٠
- Microbial ecology of soil and manure ٠
- Cover crops ٠
- Emission of greenhouse gases ٠
- Nutrients in wastes and fertilisers ٠

ARHUS

EPARTMENT OF AGROECOLOGY

KLIMA – Climate and Water

Research areas:

- Agrohydrology
- Bioenergy ٠
- Climate change and biomass production ٠
- Water quality
- Agrosystems modelling •
- Informatics and GIS •
- Agriculture's climate impact •

AARHUS

IIVFRSITY

EPARTMENT OF AGROECOLOGY

SYSTEM – Agricultural Systems and Sustainability

Research areas:

- Sustainable resource management •
- Life cycle assessment of food and other biobased products
- Organic animal production
- Organisation of food systems
- Productivity and profitability in farming

MENT OF AGROECOLOGY

Pioneer centre Land-CRAFT

Support transformational change of current food systems

- Understand nutrient and GHG fluxes at landscape scale
- Identify and test mitigation actions at landscape scale
- Develop monitoring, reporting and verification (MRV)

Aarhus University University of Copenhagen Karlsruhe Institute of Technology Colorado State University

Prof. Klaus Butterbach-Bahl

Now in contract negotiation, starts spring 2022

There a many sustainability challenges

- Lower GHG and environmental footprint
- Enhance biodiversity (inside and outside farming)
- Less pesticide use
- Land area for other purposes (infrastructure, nature, recreation, climate change adaptation)
- Increased production of
 - Food (globally +45% by 2050)
 - Bioenergy
 - Biomaterials
- Jobs and growth outside cities

AgriFoodTure roadmap

Roadmap developed by universities and agroindustry in Denmark

is complex

Land use and management is key to mission goals

Changes in Iandscape structure

Changes in functions and management

Governance to facilitate change

Reduced net GHG emissions Greater primary production Reduced nutrient loads Reduced pesticide use Greater biodiversity

Cropping systems

Foto - Colourbe

Foto - Colourbox

T C

Arable cropping

- More biodiverse cropping systems, including legumes and mixtures
- Earlier harvesting of annual crops improved establishment of cover crops to be harvested for biorefining (double cropping)

Forage cropping

• Grassland-based forage production based on multispecies mixtures

Perennial cropping systems

- Novel productive perennial crop production systems (incl. agroforestry)
- Integration with energy production (including photovoltaic)

Management

- Novel fertilizers and fertilization (including recycled nutrients)
- Precision farming technologies (sensors and robotics)
- Plant breeding focus on environmental/climate aspects and efficiency in production chain
- Biorefining technologies upcycle biomass from across the landscape
- Enhance soil carbon through biochar (integration with energy systems)

Lower leakage and increased nutrient retention

Stipulated GHG reduction (carbon neutrality)

	Baseline	Reduction		Reduction	
	(Mt CO ₂ eq)	(%)		(Mt CO ₂ eq)	
Source	2018	2030	2050	2030	2050
Enteric fermentation (CH ₄)	3.77	40	70	1.51	2.64
Manure management (CH ₄ , N ₂ O)	2.81	50	90	1,41	2.53
Fertilization (N ₂ O)	2.83	40	70	0.91	1.60
Crop residues (N ₂ O)	0.61	10	40	0.06	0.24
Ammonia volatilization (N ₂ O)	0.34	20	40	0.07	0.13
Nitrate leaching (N ₂ O)	0.33	10	30	0.03	0.10
Liming (CO ₂)	0.24	10	20	0.02	0.05
Energy use (CO ₂)	1.25	50	100	0.62	1.25
Organic soils (CO ₂ , N ₂ O)	5.75	30	80	1.73	4.60
Soil carbon (CO ₂)	-	-	-	1.80	4.30
Total	17.37	48	100	8.16	17.44

Targets are extremely ambitious, but feasible with extraordinary large and coordinated efforts

Biodiversity and pesticides require additional effort

Pesticide use

	Reduction (%)		
Measure	2030	2050	
Perennial cropping systems	10	15	
Diversity of arable cropping	5	20	
Plant biologicals	5	10	
Plant resistance breeding	10	15	
Precision technologies	15	30	
Total	45	90	

Enhancing biodiversity

		Area (1000 ha)	
Category	Source	2030	2050
Land sparing	Rewetted areas	100	250
	Set-a-side	50	100
	Afforestation	50	100
Land sharing	Agroforestry	50	100
	Biodiverse perennial cropping	300	500
	Biodiverse arable cropping	500	1000
Total		1100	2050

